Integrative Analysis of the Identified Transcriptome and Proteome Major Metabolism Pathways Involved in the Development of Grafted Apricot Hybrids

Author:

Sun Xiying12,Tian Li234,Xu Wanyu14,Feng Luying234,Jia Wenqing3,Liu Yiteng234,Chen Zhuo234,Zhang Shulin23,Zhang Xianliang2,Ru Guangxin1

Affiliation:

1. College of Forestry, Henan Agricultural University, Zhengzhou 450002, China

2. School of Biology and Food-Engineering, Anyang Institute of Technology, Anyang 455000, China

3. School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 450003, China

4. Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China

Abstract

Plant distant grafting can produce stable genetic variation, which is a new method for germplasm innovation. Two chimeras, peach/apricot (PA) and apricot/peach (AP), were created through two-way grafting between peach and apricot. The leaves, flowers and fruit phenotypes of chimeras were significantly different to self-rooted rootstock. In order to investigate the causes of such changes, transcriptome and proteome integrative analyses were conducted on apricots from these two chimeras. Many differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) that may be connected to the development of grafted apricot hybrids were identified and explored based on function. Moreover, we found 76 genes in forward-grafted PA and 46 in reverse-grafted AP that overlapped both in DEGs and DEPs (DEGs/DEPs) via transcriptome–proteome integrative analysis. Mapping the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database in PA and AP, the top significant enrichment pathways of DEGs/DEPs included lipid metabolism (fatty acid elongation, cutin, suberine and wax biosynthesis, fatty acid degradation and alpha-linolenic acid metabolism) and carbohydrate metabolism (glycolysis/gluconeogenesis, starch and sucrose metabolism and galactose metabolism), revealing that lipid metabolism and carbohydrate metabolism may play an irreplaceable role in the development of grafted apricot hybrids. Taken together, this work uncovered numerous candidate transcripts and proteins involved in the development of grafted apricot hybrids. The molecular mechanisms provide new insights into this important process in other heterografting hybrids.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3