Inception Convolution and Feature Fusion for Person Search

Author:

Ouyang Huan12ORCID,Zeng Jiexian13,Leng Lu12

Affiliation:

1. School of Software, Nanchang Hangkong University, Nanchang 330063, China

2. Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang 330063, China

3. Science and Technology College, Nanchang Hangkong University, Gongqingcheng 332020, China

Abstract

With the rapid advancement of deep learning theory and hardware device computing capacity, computer vision tasks, such as object detection and instance segmentation, have entered a revolutionary phase in recent years. As a result, extremely challenging integrated tasks, such as person search, might develop quickly. The majority of efficient network frameworks, such as Seq-Net, are based on Faster R-CNN. However, because of the parallel structure of Faster R-CNN, the performance of re-ID can be significantly impacted by the single-layer, low resolution, and occasionally overlooked check feature diagrams retrieved during pedestrian detection. To address these issues, this paper proposed a person search methodology based on an inception convolution and feature fusion module (IC-FFM) using Seq-Net (Sequential End-to-end Network) as the benchmark. First, we replaced the general convolution in ResNet-50 with the new inception convolution module (ICM), allowing the convolution operation to effectively and dynamically distribute various channels. Then, to improve the accuracy of information extraction, the feature fusion module (FFM) was created to combine multi-level information using various levels of convolution. Finally, Bounding Box regression was created using convolution and the double-head module (DHM), which considerably enhanced the accuracy of pedestrian retrieval by combining global and fine-grained information. Experiments on CHUK-SYSU and PRW datasets showed that our method has higher accuracy than Seq-Net. In addition, our method is simpler and can be easily integrated into existing two-stage frameworks.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Key Program Project of Research and Development

The technology Innovation Guidance Program Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3