Multi-Wavelength Biometric Acquisition System Utilizing Finger Vasculature NIR Imaging

Author:

Fiolka Jerzy1ORCID,Bernacki Krzysztof1ORCID,Farah Alejandro2,Popowicz Adam1ORCID

Affiliation:

1. Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

2. Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico

Abstract

Personal identification using analysis of the internal and external characteristics of the human finger is currently an intensively developed topic. The work in this field concerns new methods of feature extraction and image analysis, mainly using modern artificial intelligence algorithms. However, the quality of the data and the way in which it is obtained determines equally the effectiveness of identification. In this article, we present a novel device for extracting vision data from the internal as well as external structures of the human finger. We use spatially selective backlight consisting of NIR diodes of three wavelengths. The fast image acquisition allows for insight into the pulse waveform. Thanks to the external illuminator, images of the skin folds of the finger are acquired as well. This rich collection of images is expected to significantly enhance identification capabilities using existing and future classic and AI-based computer vision techniques. Sample data from our device, before and after data processing, have been shared in a publicly available database.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-powered biometrics for Internet of Things security: A review and future vision;Journal of Information Security and Applications;2024-05

2. Wideband optical edge detection based on dielectric metasurface;Applied Physics Letters;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3