DEHA-Net: A Dual-Encoder-Based Hard Attention Network with an Adaptive ROI Mechanism for Lung Nodule Segmentation

Author:

Usman Muhammad1ORCID,Shin Yeong-Gil1

Affiliation:

1. Department of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Abstract

Measuring pulmonary nodules accurately can help the early diagnosis of lung cancer, which can increase the survival rate among patients. Numerous techniques for lung nodule segmentation have been developed; however, most of them either rely on the 3D volumetric region of interest (VOI) input by radiologists or use the 2D fixed region of interest (ROI) for all the slices of computed tomography (CT) scan. These methods only consider the presence of nodules within the given VOI, which limits the networks’ ability to detect nodules outside the VOI and can also encompass unnecessary structures in the VOI, leading to potentially inaccurate segmentation. In this work, we propose a novel approach for 3D lung nodule segmentation that utilizes the 2D region of interest (ROI) inputted from a radiologist or computer-aided detection (CADe) system. Concretely, we developed a two-stage lung nodule segmentation technique. Firstly, we designed a dual-encoder-based hard attention network (DEHA-Net) in which the full axial slice of thoracic computed tomography (CT) scan, along with an ROI mask, were considered as input to segment the lung nodule in the given slice. The output of DEHA-Net, the segmentation mask of the lung nodule, was inputted to the adaptive region of interest (A-ROI) algorithm to automatically generate the ROI masks for the surrounding slices, which eliminated the need for any further inputs from radiologists. After extracting the segmentation along the axial axis, at the second stage, we further investigated the lung nodule along sagittal and coronal views by employing DEHA-Net. All the estimated masks were inputted into the consensus module to obtain the final volumetric segmentation of the nodule. The proposed scheme was rigorously evaluated on the lung image database consortium and image database resource initiative (LIDC/IDRI) dataset, and an extensive analysis of the results was performed. The quantitative analysis showed that the proposed method not only improved the existing state-of-the-art methods in terms of dice score but also showed significant robustness against different types, shapes, and dimensions of the lung nodules. The proposed framework achieved the average dice score, sensitivity, and positive predictive value of 87.91%, 90.84%, and 89.56%, respectively.

Funder

HealthHub, Seoul, South Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

1. Measurement of tumor volumes improves RECIST-based response assessments in advanced lung cancer;Mozley;Transl. Oncol.,2012

2. Use of volumetry for lung nodule management: Theory and practice;Devaraj;Radiology,2017

3. Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans;Moltz;IEEE J. Sel. Top. Signal Process.,2009

4. Usman, M., Rehman, A., Shahid, A., Latif, S., Byon, S.S., Lee, B.D., Kim, S.H., and Shin, Y.G. (2022). MEDS-Net: Self-Distilled Multi-Encoders Network with Bi-Direction Maximum Intensity projections for Lung Nodule Detection. arXiv.

5. Volumetric lung nodule segmentation using adaptive roi with multi-view residual learning;Usman;Sci. Rep.,2020

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3