Clinically Informed Automated Assessment of Finger Tapping Videos in Parkinson’s Disease

Author:

Yu Tianze1,Park Kye Won2ORCID,McKeown Martin J.23ORCID,Wang Z. Jane1

Affiliation:

1. Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

2. Pacific Parkinson Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

3. Department of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Abstract

The utilization of Artificial Intelligence (AI) for assessing motor performance in Parkinson’s Disease (PD) offers substantial potential, particularly if the results can be integrated into clinical decision-making processes. However, the precise quantification of PD symptoms remains a persistent challenge. The current standard Unified Parkinson’s Disease Rating Scale (UPDRS) and its variations serve as the primary clinical tools for evaluating motor symptoms in PD, but are time-intensive and prone to inter-rater variability. Recent work has applied data-driven machine learning techniques to analyze videos of PD patients performing motor tasks, such as finger tapping, a UPDRS task to assess bradykinesia. However, these methods often use abstract features that are not closely related to clinical experience. In this paper, we introduce a customized machine learning approach for the automated scoring of UPDRS bradykinesia using single-view RGB videos of finger tapping, based on the extraction of detailed features that rigorously conform to the established UPDRS guidelines. We applied the method to 75 videos from 50 PD patients collected in both a laboratory and a realistic clinic environment. The classification performance agreed well with expert assessors, and the features selected by the Decision Tree aligned with clinical knowledge. Our proposed framework was designed to remain relevant amid ongoing patient recruitment and technological progress. The proposed approach incorporates features that closely resonate with clinical reasoning and shows promise for clinical implementation in the foreseeable future.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Collaborative Health Research Project

John Nichol Chair in Parkinson’s Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of Parkinson Detection Techniques;2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP);2024-07-11

2. Medical-informed machine learning: integrating prior knowledge into medical decision systems;BMC Medical Informatics and Decision Making;2024-06-28

3. Bradykinesia in dystonic hand tremor: kinematic analysis and clinical rating;Frontiers in Human Neuroscience;2024-06-13

4. Characterizing Disease Progression in Parkinson’s Disease from Videos of the Finger Tapping Test;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3