Tunnel Crack Detection Method and Crack Image Processing Algorithm Based on Improved Retinex and Deep Learning
Author:
Wu Jie1ORCID,
Zhang Xiaoqian2
Affiliation:
1. School of Defense, Xi’an Technological University, Xi’an 710021, China
2. School of Electronic and Information Engineering, Xi’an Technological University, Xi’an 710021, China
Abstract
Tunnel cracks are the main factors that cause damage and collapse of tunnel structures. How to detect tunnel cracks efficiently and avoid safety accidents caused by tunnel cracks effectively is a research hotspot at present. In order to meet the need for efficient detection of tunnel cracks, the tunnel crack detection method based on improved Retinex and deep learning is proposed in this paper. The tunnel crack images collected by optical imaging equipment are used to improve the contrast information of tunnel crack images using the image enhancement algorithm, and this image enhancement algorithm has the function of multi-scale Retinex decomposition with improved central filtering. An improved VGG19 network model is constructed to achieve efficient segmentation of tunnel crack images through deep learning methods and then form the segmented binary image. The Zhang–Suen fast parallel-thinning method is used to obtain the skeleton map of the single-layer pixel, and the length and width information of the tunnel cracks are obtained. The feasibility and effectiveness of the proposed method are verified by experiments. Compared with other methods in the literature, the maximum deviation in the length of the tunnel crack is about 5 mm, and the maximum deviation in the width of the tunnel crack is about 0.8 mm. The experimental results show that the proposed method has a shorter detection time and higher detection accuracy. The research results of this paper can provide a strong basis for the health evaluation of tunnels.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference33 articles.
1. Data cleaning framework for highway asphalt pavement inspection data based on artificial neural networks;Han;Int. J. Pavement Eng.,2022
2. Information extraction of surface crack position in mining subsidence area based on wavelet transform;Li;Sci. Surv. Mapp.,2010
3. Point cloud data processing method of cavity 3D laser scanner;Chen;Acta Opt. Sin.,2013
4. Image processing of highway crack in mining area based on laser point cloud;Liu;Coal Technol.,2021
5. Development and future prospect of tunnel machine detection equipment;Huang;J. Highw. Transp. Res. Dev.,2021