Tunnel Crack Detection Method and Crack Image Processing Algorithm Based on Improved Retinex and Deep Learning

Author:

Wu Jie1ORCID,Zhang Xiaoqian2

Affiliation:

1. School of Defense, Xi’an Technological University, Xi’an 710021, China

2. School of Electronic and Information Engineering, Xi’an Technological University, Xi’an 710021, China

Abstract

Tunnel cracks are the main factors that cause damage and collapse of tunnel structures. How to detect tunnel cracks efficiently and avoid safety accidents caused by tunnel cracks effectively is a research hotspot at present. In order to meet the need for efficient detection of tunnel cracks, the tunnel crack detection method based on improved Retinex and deep learning is proposed in this paper. The tunnel crack images collected by optical imaging equipment are used to improve the contrast information of tunnel crack images using the image enhancement algorithm, and this image enhancement algorithm has the function of multi-scale Retinex decomposition with improved central filtering. An improved VGG19 network model is constructed to achieve efficient segmentation of tunnel crack images through deep learning methods and then form the segmented binary image. The Zhang–Suen fast parallel-thinning method is used to obtain the skeleton map of the single-layer pixel, and the length and width information of the tunnel cracks are obtained. The feasibility and effectiveness of the proposed method are verified by experiments. Compared with other methods in the literature, the maximum deviation in the length of the tunnel crack is about 5 mm, and the maximum deviation in the width of the tunnel crack is about 0.8 mm. The experimental results show that the proposed method has a shorter detection time and higher detection accuracy. The research results of this paper can provide a strong basis for the health evaluation of tunnels.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Data cleaning framework for highway asphalt pavement inspection data based on artificial neural networks;Han;Int. J. Pavement Eng.,2022

2. Information extraction of surface crack position in mining subsidence area based on wavelet transform;Li;Sci. Surv. Mapp.,2010

3. Point cloud data processing method of cavity 3D laser scanner;Chen;Acta Opt. Sin.,2013

4. Image processing of highway crack in mining area based on laser point cloud;Liu;Coal Technol.,2021

5. Development and future prospect of tunnel machine detection equipment;Huang;J. Highw. Transp. Res. Dev.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3