Robust Orthogonal-View 2-D/3-D Rigid Registration for Minimally Invasive Surgery

Author:

An Zhou,Ma Honghai,Liu LiluORCID,Wang Yue,Lu HaojianORCID,Zhou Chunlin,Xiong Rong,Hu Jian

Abstract

Intra-operative target pose estimation is fundamental in minimally invasive surgery (MIS) to guiding surgical robots. This task can be fulfilled by the 2-D/3-D rigid registration, which aligns the anatomical structures between intra-operative 2-D fluoroscopy and the pre-operative 3-D computed tomography (CT) with annotated target information. Although this technique has been researched for decades, it is still challenging to achieve accuracy, robustness and efficiency simultaneously. In this paper, a novel orthogonal-view 2-D/3-D rigid registration framework is proposed which combines the dense reconstruction based on deep learning and the GPU-accelerated 3-D/3-D rigid registration. First, we employ the X2CT-GAN to reconstruct a target CT from two orthogonal fluoroscopy images. After that, the generated target CT and pre-operative CT are input into the 3-D/3-D rigid registration part, which potentially needs a few iterations to converge the global optima. For further efficiency improvement, we make the 3-D/3-D registration algorithm parallel and apply a GPU to accelerate this part. For evaluation, a novel tool is employed to preprocess the public head CT dataset CQ500 and a CT-DRR dataset is presented as the benchmark. The proposed method achieves 1.65 ± 1.41 mm in mean target registration error(mTRE), 20% in the gross failure rate(GFR) and 1.8 s in running time. Our method outperforms the state-of-the-art methods in most test cases. It is promising to apply the proposed method in localization and nano manipulation of micro surgical robot for highly precise MIS.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image registration based automated lesion correspondence pipeline for longitudinal CT data;2024 IEEE International Conference on Prognostics and Health Management (ICPHM);2024-06-17

2. 3D Image Generation from X-Ray Projections Using Generative Adversarial Networks;2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE);2023-12-04

3. SGReg: segmentation guided 3D/2D rigid registration for orthogonal X-ray and CT images in spine surgery navigation;Physics in Medicine & Biology;2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3