Exploration of Machine Learning for Hyperuricemia Prediction Models Based on Basic Health Checkup Tests

Author:

Lee Sangwoo,Choe Eun,Park Boram

Abstract

Background: Machine learning (ML) is a promising methodology for classification and prediction applications in healthcare. However, this method has not been practically established for clinical data. Hyperuricemia is a biomarker of various chronic diseases. We aimed to predict uric acid status from basic healthcare checkup test results using several ML algorithms and to evaluate the performance. Methods: We designed a prediction model for hyperuricemia using a comprehensive health checkup database designed by the classification of ML algorithms, such as discrimination analysis, K-nearest neighbor, naïve Bayes (NBC), support vector machine, decision tree, and random forest classification (RFC). The performance of each algorithm was evaluated and compared with the performance of a conventional logistic regression (CLR) algorithm by receiver operating characteristic curve analysis. Results: Of the 38,001 participants, 7705 were hyperuricemic. For the maximum sensitivity criterion, NBC showed the highest sensitivity (0.73), and RFC showed the second highest (0.66); for the maximum balanced classification rate (BCR) criterion, RFC showed the highest BCR (0.68), and NBC showed the second highest (0.66) among the various ML algorithms for predicting uric acid status. In a comparison to the performance of NBC (area under the curve (AUC) = 0.669, 95% confidence intervals (CI) = 0.669–0.675) and RFC (AUC = 0.775, 95% CI 0.770–0.780) with a CLR algorithm (AUC = 0.568, 95% CI = 0.563–0.571), NBC and RFC showed significantly better performance (p < 0.001). Conclusions: The ML model was superior to the CLR model for the prediction of hyperuricemia. Future studies are needed to determine the best-performing ML algorithms based on data set characteristics. We believe that this study will be informative for studies using ML tools in clinical research.

Funder

Seoul National University Hospital

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3