Data Independent Acquisition Mass Spectrometry Can Identify Circulating Proteins That Predict Future Weight Loss with a Diet and Exercise Programme

Author:

Malipatil Nagaraj,Fachim Helene A.,Siddals Kirk,Geary Bethany,Wark Gwen,Porter Nick,Anderson Simon,Donn RachelleORCID,Harvie Michelle,Whetton Anthony D.,Gibson Martin J.,Heald Adrian

Abstract

We investigated biological determinants that would associate with the response to a diet and weight loss programme in impaired glucose regulation (IGR) people using sequential window acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry (MS), a data acquisition method which complement traditional mass spectrometry-based proteomics techniques. Ten women and 10 men with IGR underwent anthropometric measurements and fasting blood tests. SWATH MS was carried out with subsequent immunoassay of specific peptide levels. After a six-month intervention, 40% of participants lost 3% or more in weight, 45% of patients remained within 3% of their starting weight and 15% increased their weight by 3% or more. Hemoglobin A1c (HbA1C) level was reduced with weight loss with improvements in insulin sensitivity. SWATH MS on pre-intervention samples and subsequent principal component analysis identified a cluster of proteins associated with future weight loss, including insulin-like growth factor-II (IGF-II) and Vitamin D binding protein. Individuals who lost 3% in weight had significantly higher baseline IGF-II levels than those who did not lose weight. SWATH MS successfully discriminated between individuals who were more likely to lose weight and potentially improve their sensitivity to insulin. A higher IGF-II baseline was predictive of success with weight reduction, suggesting that biological determinants are important in response to weight loss and exercise regimes. This may permit better targeting of interventions to prevent diabetes in the future.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3