Abstract
In the case of building surfaces, the installation of green roofs or green facades can be used to reduce the temperature of the environment and the building. In addition, introducing photovoltaic energy production will help to reduce CO2 emissions. Both approaches (building greenery and photovoltaic energy production) compete, as both of them are located on the exterior of buildings. This paper aims to give an overview of solutions for the combination of building greenery (BG) systems and photovoltaic (PV) panels. Planning principles for different applications are outlined in a guideline for planning a sustainable surface on contemporary buildings. A comprehensive literature review was done. Identified solutions of combinations were systematically analysed and discussed in comparison with additional relevant literature. The main findings of this paper were: (A) BG and PV systems with low sub-construction heights require shallow substrates/low growing plants, whereas in the case of the combination of (a semi)-intensive GR system, a distance of a minimum 60 cm between the substrate surface and lower panel edge is recommended; (B) The cooling effect of the greenery depends on the distance between the PV and the air velocity; (C) if the substrate is dry, there is no evapotranspiration and therefore no cooling effect; (D) A spectrum of different PV systems, sub-constructions, and plants for the combination of BG and PV is necessary and suitable for different applications shown within the publication.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference62 articles.
1. Reduktion staedtischer Waermeinseln durch Verbesserung der Abstrahleigenschaften von Gebaeuden und Quartieren (KELVIN);Schwaiger,2018
2. Urban Heat Islands Strategieplan;Brandenburg,2015
3. Case study investigation of the building physical properties of seven different green roof systems
4. The effect of living wall systems on the thermal resistance of the façade
5. Paris Agreement;Nations,2015
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献