Deep Physiological Model for Blood Glucose Prediction in T1DM Patients

Author:

Munoz-Organero MarioORCID

Abstract

Accurate estimations for the near future levels of blood glucose are crucial for Type 1 Diabetes Mellitus (T1DM) patients in order to be able to react on time and avoid hypo and hyper-glycemic episodes. Accurate predictions for blood glucose are the base for control algorithms in glucose regulating systems such as the artificial pancreas. Numerous research studies have already been conducted in order to provide predictions for blood glucose levels with particularities in the input signals and underlying models used. These models can be categorized into two major families: those based on tuning glucose physiological-metabolic models and those based on learning glucose evolution patterns based on machine learning techniques. This paper reviews the state of the art in blood glucose predictions for T1DM patients and proposes, implements, validates and compares a new hybrid model that decomposes a deep machine learning model in order to mimic the metabolic behavior of physiological blood glucose methods. The differential equations for carbohydrate and insulin absorption in physiological models are modeled using a Recurrent Neural Network (RNN) implemented using Long Short-Term Memory (LSTM) cells. The results show Root Mean Square Error (RMSE) values under 5 mg/dL for simulated patients and under 10 mg/dL for real patients.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3