Removal Efficiency of Bottom Ash and Sand Mixtures as Filter Layers for Fine Particulate Matter

Author:

Lee Yunje1ORCID,Lee Donghyun2,Lee Hongkyoung3,Choe Hyun-Seok1,Kim Jae-Hyuk1,Choi Yongjin4,Ahn Jaehun1

Affiliation:

1. Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea

2. Global Business Energy Infra Team, HanmiGlobal Co., Ltd., Seoul 06164, Republic of Korea

3. Construction Division, NEODNC Co., Ltd., Busan 48106, Republic of Korea

4. Maseeh Department of Civil Architectural and Environmental Engineering Austin, The University of Texas at Austin, Austin, TX 78712, USA

Abstract

Permeable pavement is a technology that allows rainwater to infiltrate into the pavement. Permeable pavements not only help reduce surface runoff by allowing rainwater to infiltrate into the pavement, but also improve water quality with the filter layer that removes particulate matter pollutants. This study evaluated the particulate matter removal efficiency of bottom ash–sand mixtures as filter layers for removing fine (≤10 μm) or ultrafine (≤2.5 μm) particulate matter in the laboratory. Five filter media were tested: silica sand, bottom ash, and bottom ash–sand mixtures with 30:70, 50:50, and 70:30 ratios. The mixed filters exhibited more consistent and stable particulate matter removal efficiency over time than either the uniform sand or bottom ash filter. The 50:50 bottom ash–sand mixture demonstrated removal rates of 58.05% for 1.8 μm particles, 93.92% for 10 μm particles, and 92.45% for 60 μm particles. These findings highlight the potential of bottom ash–sand mixtures as effective filter media for removing PM10 road dust, although field validation with actual pavement systems is necessary.

Funder

Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3