Hydrothermal Hot Isostatic Pressing (HHIP)—Experimental Proof of Concept

Author:

Aviezer Yaron1,Ariely Shmuel2ORCID,Bamberger Menachem3,Zolotaryov Denis2,Essel Shai4,Lahav Ori1

Affiliation:

1. Faculty of Civil and Environmental Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

2. Israel Institute of Materials Manufacturing Technologies, Technion—Israel Institute of Technology, Haifa 32000, Israel

3. Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

4. Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

Abstract

A new hydrothermal hot isostatic pressing (HHIP) approach, involving hydrothermal water conditions and no usage of inert gas, was hypothesized and tested on 3D-printed Al-10%Si-0.3%Mg (%Wt) parts. The aluminum-based metal was practically inert at the applied HHIPing conditions of 300–350 MPa and 250–350 °C, which enabled the employment of a long (6–24 h) HHIP treatment with hardly any loss of material (the overall loss due to corrosion was mostly <0.5% w/w). Applying the new approach on the above-mentioned samples resulted in an 85.7% reduction in the AM micro-pores, along with a 90.8% reduction in the pores’ surface area at a temperature of 350 °C, which is much lower than the 500–520 °C applied in common argon-based aluminum HIPing treatments, while practically maintaining the as-recieved microstructure. These results show that better mechanical properties can be expected when using the suggested treatment without affecting the material fatigue resistance due to grain growth. The proof of concept presented in this work can pave the way to applying the new HHIPing approach to other AM metal parts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3