Hydrothermal Growth and Orientation of LaFeO3 Epitaxial Films

Author:

Xian Guang1ORCID,Zheng Tongxin1,Tao Yaqiu12,Pan Zhigang12ORCID

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China

2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China

Abstract

LaFeO3 thin films were successfully epitaxially grown on single-crystalline SrTiO3 substrates by the one-step hydrothermal method at a temperature of 320 °C in a 10 mol/L KOH aqueous solution using La(NO3)3 and Fe(NO3)3 as the raw materials. The growth of the films was consistent with the island growth mode. Scanning electronic microscopy, elemental mapping, and atomic force microscopy demonstrate that the LaFeO3 thin films cover the SrTiO3 substrate thoroughly. The film subjected to hydrothermal treatment for 4 h exhibits a relatively smooth surface, with an average surface roughness of 10.1 nm. X-ray diffraction in conventional Bragg–Brentano mode shows that the LaFeO3 thin films show the same out-of-plane orientation as that of the substrate (i.e., (001)LaFeO3||(001)SrTiO3). The in-plane orientation of the films was analyzed by φ-scanning, revealing that the orientational relationship is [001]LaFeO3||[001]SrTiO3. The ω-rocking curve indicates that the prepared LaFeO3 films are of high quality with no significant mosaic defects.

Funder

the Jiangsu Higher Education Institution

Publisher

MDPI AG

Reference33 articles.

1. A generic lanthanum doping strategy enabling efficient lead halide perovskite luminescence for backlights;Liu;Sci. Bull.,2023

2. Synthesis and on-line ultrasonic characterisation of bulk and nanocrystalline La0.68Sr0.32MnO3 perovskite manganite;Sakthipandi;J. Alloys Compd.,2011

3. Role of lanthanum vacancy on the structural, magnetic and magnetocaloric properties in the lacunar perovskite manganites La0.8−x□xNa0.2MnO3 (0 ≤ x ≤ 0.15);Koubaa;R. Soc. Chem. Adv.,2017

4. Niobium doped lanthanum calcium ferrite perovskite as a novel electrode material for symmetrical solid oxide fuel cells;Kong;J. Power Sources,2016

5. Perovskite-type lanthanum ferrite based photocatalysts: Preparation, properties, and applications;Humayun;J. Energy Chem.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3