The Effect of Sputtering Sequence Engineering in Superlattice-like Sb-Rich-Based Phase Change Materials

Author:

Li Anding1,Liu Ruirui1,Liu Liu1,Chen Yukun1,Zhou Xiao2

Affiliation:

1. School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China

2. State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

This paper presents a comprehensive investigation into the thermal stability of superlattice-like (SLL) thin films fabricated by varying the sputtering sequences of the SLL [Ge8Sb92(25nm)/GeTe(25nm)]1 and SLL [GeTe(25nm)/Ge8Sb92(25nm)]1 configurations. Our results reveal significantly enhanced ten-year data retention (Tten) for both thin films measured at 124.3 °C and 151.9 °C, respectively. These values surpass the Tten of Ge2Sb2Te5 (85 °C), clearly demonstrating the superior thermal stability of the studied SLL configurations. Interestingly, we also observe a distinct difference in the thermal stability between the two SLL configurations. The superior thermal stability of SLL [GeTe(25nm)/Ge8Sb92(25nm)]1 is attributed to the diffusion of the Sb precipitated phase from Ge8Sb92 to GeTe. This diffusion process effectively reduces the impact of the Sb phase on the thermal stability of the thin film. In contrast, in the case of SLL [Ge8Sb92(25nm)/GeTe(25nm)]1, the presence of the Sb precipitated phase in Ge8Sb92 facilitates the crystallization of GeTe, leading to reduced thermal stability. These findings underscore the significant influence of the sputtering sequence on the atomic behavior and thermal properties of superlattice-like phase change materials. Such insights provide a robust foundation for the design and exploration of novel phase change materials with improved thermal performance.

Funder

National Key Research and Development Program of China

National Nature Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3