Design of Environmental-Friendly Carbon-Based Catalysts for Efficient Advanced Oxidation Processes

Author:

Xu Xinru1,Kuang Guochen1,Jiang Xiao1,Wei Shuoming1,Wang Haiyuan2,Zhang Zhen1

Affiliation:

1. Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China

2. National Demonstration Center for Chemistry and Chemical Engineering Education, Tianjin University, Tianjin 300350, China

Abstract

Advanced oxidation processes (AOPs) represent one of the most promising strategies to generate highly reactive species to deal with organic dye-contaminated water. However, developing green and cost-effective catalysts is still a long-term goal for the wide practical application of AOPs. Herein, we demonstrated doping cobalt in porous carbon to efficiently catalyze the oxidation of the typically persistent organic pollutant rhodamine B, via multiple reactive species through the activation of peroxymonosulfate (PMS). The catalysts were prepared by facile pyrolysis of nanocomposites with a core of cobalt-loaded silica and a shell of phenolic resin (Co-C/SiO2). It showed that the produced 1O2 could effectively attack the electron-rich functional groups in rhodamine B, promoting its molecular chain breakage and accelerating its oxidative degradation reaction with reactive oxygen-containing radicals. The optimized Co-C/SiO2 catalyst exhibits impressive catalytic performance, with a degradation rate of rhodamine B up to 96.7% in 14 min and a reaction rate constant (k) as high as 0.2271 min−1, which suggested promising potential for its practical application.

Funder

National Natural Science Foundation of China

Program of Tianjin Science and Technology Major Project and Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3