A Review of Passive and Active Ultra-Wideband Baluns for Use in Ground Penetrating Radar

Author:

van Verre WouterORCID,Podd Frank J. W.ORCID,Gao XianyangORCID,Daniels David J.ORCID,Peyton Anthony J.ORCID

Abstract

Microwave ultra-wideband technology has been widely adopted in instrumentation and measurement systems, including ground-penetrating radar (GPR) sensors. Baluns are essential components in these systems to feed balanced antennas from unbalanced feed cables. Baluns are typically introduced to avoid issues with return signals, asymmetrical radiation patterns and radiation from cables. In GPR systems, these issues can cause poor sensitivity due to a reduction in radiated power, blind spots due to changes in the radiation pattern and additional clutter from common mode radiation. The different balun technologies currently available exhibit a wide variation in performance characteristics such as insertion loss, reflection coefficient and phase balance, as well as physical properties such as size and manufacturability. In this study, the performance of two magnetic transformer baluns, two tapered microstrip baluns and an active balun based on high-speed amplifiers were investigated, all up to frequencies of 6 GHz. A radio frequency current probe was used to measure the common mode currents on the feed cables that occur with poor performing baluns. It was found that commercially available magnetic transformer baluns have the best phase linearity, while also having the highest insertion losses. The active balun design has the best reflection coefficient at low frequencies, while, at high frequencies, its performance is similar to the other baluns tested. It was found that the active balun had the lowest common mode current on the feed cables.

Funder

Engineering and Physical Sciences Research Council

Sir Bobby Charlton Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Development of 1:4 BALUN for HF band;2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC);2024-05-02

2. Design of a compact antenna with broadband and high gain;Electromagnetics;2024-01-02

3. Limited Effectiveness of Balancing a Coaxial Feeder with a Balun for Radio Frequencies;2023 International Symposium on Electromagnetic Compatibility – EMC Europe;2023-09-04

4. Editorial for the Special Issue “Review of Application Areas of GPR”;Remote Sensing;2023-08-29

5. Directional and High-Gain Ultra-Wideband Bow-Tie Antenna for Ground-Penetrating Radar Applications;Remote Sensing;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3