A Hybrid Approach of Combining Random Forest with Texture Analysis and VDVI for Desert Vegetation Mapping Based on UAV RGB Data

Author:

Zhou Huoyan,Fu Liyong,Sharma Ram P.ORCID,Lei Yuancai,Guo Jinping

Abstract

Desert vegetation is an important part of arid and semi-arid areas, which plays an important role in preventing wind and fixing sand, conserving water and soil, maintaining the balanced ecosystem. Therefore, mapping the vegetation accurately is necessary to conserve rare desert plants in the fragile ecosystems that are easily damaged and slow to recover. In mapping desert vegetation, there are some weaknesses by using traditional digital classification algorithms from high resolution data. The traditional approach is to use spectral features alone, without spatial information. With the rapid development of drones, cost-effective visible light data is easily available, and the data would be non-spectral but with spatial information. In this study, a method of mapping the desert rare vegetation was developed based on the pixel classifiers and use of Random Forest (RF) algorithm with the feature of VDVI and texture. The results indicated the accuracy of mapping the desert rare vegetation were different with different methods and the accuracy of the method proposed was higher than the traditional method. The most commonly used decision rule in the traditional method, named Maximum Likelihood classifier, produced overall accuracy (76.69%). The inclusion of texture and VDVI features with RGB (Red Green Blue) data could increase the separability, thus improved the precision. The overall accuracy could be up to 84.19%, and the Kappa index with 79.96%. From the perspective of features, VDVI is less important than texture features. The texture features appeared more important than spectral features in desert vegetation mapping. The RF method with the RGB+VDVI+TEXTURE would be better method for desert vegetation mapping compared with the common method. This study is the first attempt of classifying the desert vegetation based on the RGB data, which will help to inform management and conservation of Ulan Buh desert vegetation.

Funder

the Central Public-interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference62 articles.

1. Remote sensing technology for mapping and monitoring land-cover and land-use change

2. Studies on the sandy desertification in China;Wang;Chin. J. Eco. Agric.,2001

3. A review of remote sensing monitoring and quantitative assessment of aeolian desertificatoin;Kang;J. Desert Res.,2014

4. Ecosystems and Humanwell-Being: Desertificationi Synthesis,2005

5. Investigating natural drivers of vegetation coverage variation using MODIS imagery in Qinghai, China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3