Abstract
Radar imaging has many advantages. Meanwhile, SAR images suffer from a noise-like phenomenon called speckle. Many despeckling methods have been proposed to date but there is still no common opinion as to what the best filter is and/or what are its parameters (window or block size, thresholds, etc.). The local statistic Lee filter is one of the most popular and best-known despeckling techniques in radar image processing. Using this filter and Sentinel-1 images as a case study, we show how filter parameters, namely scanning window size, can be selected for a given image based on filter efficiency prediction. Such a prediction can be carried out using a set of input parameters that can be easily and quickly calculated and employing a trained neural network that allows determining one or several criteria of filtering efficiency with high accuracy. The statistical analysis of the obtained results is carried out. This characterizes improvements due to the adaptive selection of the filter window size, both potential and based on prediction. We also analyzed what happens if, due to prediction errors, erroneous decisions are undertaken. Examples for simulated and real-life images are presented.
Subject
General Earth and Planetary Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献