Radiomics Analysis of 3D Dose Distributions to Predict Toxicity of Radiotherapy for Cervical Cancer

Author:

Lucia François,Bourbonne VincentORCID,Visvikis Dimitris,Miranda Omar,Gujral Dorothy M.,Gouders Dominique,Dissaux Gurvan,Pradier Olivier,Tixier Florent,Jaouen Vincent,Bert Julien,Hatt Mathieu,Schick Ulrike

Abstract

Standard treatment for locally advanced cervical cancer (LACC) is chemoradiotherapy followed by brachytherapy. Despite radiation therapy advances, the toxicity rate remains significant. In this study, we compared the prediction of toxicity events after radiotherapy for locally advanced cervical cancer (LACC), based on either dose-volume histogram (DVH) parameters or the use of a radiomics approach applied to dose maps at the voxel level. Toxicity scores using the Common Terminology Criteria for Adverse Events (CTCAE v4), spatial dose distributions, and usual clinical predictors for the toxicity of 102 patients treated with chemoradiotherapy followed by brachytherapy for LACC were used in this study. In addition to usual DVH parameters, 91 radiomic features were extracted from rectum, bladder and vaginal 3D dose distributions, after discretization into a fixed bin width of 1 Gy. They were evaluated for predictive modelling of rectal, genitourinary (GU) and vaginal toxicities (grade ≥ 2). Logistic Normal Tissue Complication Probability (NTCP) models were derived using clinical parameters only or combinations of clinical, DVH and radiomics. For rectal acute/late toxicities, the area under the curve (AUC) using clinical parameters was 0.53/0.65, which increased to 0.66/0.63, and 0.76/0.87, with the addition of DVH or radiomics parameters, respectively. For GU acute/late toxicities, the AUC increased from 0.55/0.56 (clinical only) to 0.84/0.90 (+DVH) and 0.83/0.96 (clinical + DVH + radiomics). For vaginal acute/late toxicities, the AUC increased from 0.51/0.57 (clinical only) to 0.58/0.72 (+DVH) and 0.82/0.89 (clinical + DVH + radiomics). The predictive performance of NTCP models based on radiomics features was higher than the commonly used clinical and DVH parameters. Dosimetric radiomics analysis is a promising tool for NTCP modelling in radiotherapy.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3