Parathyroid Hormone Secretion and Receptor Expression Determine the Age-Related Degree of Osteogenic Differentiation in Dental Pulp Stem Cells

Author:

Bhandi Shilpa,Alkahtani Ahmed,Reda RodolfoORCID,Mashyakhy Mohammed,Boreak NezarORCID,Maganur Prabhadevi C.ORCID,Vishwanathaiah SatishORCID,Mehta Deepak,Vyas Nishant,Patil VikrantORCID,Raj A. ThirumalORCID,Testarelli LucaORCID,Patil ShankargoudaORCID

Abstract

Objective: To demonstrate the levels of parathyroid hormone secretion and genetic expressions of parathyroid hormone (PTH) and PTH1 receptor (PTH1R) genes in the dental pulp stem cells (DPSCs) from different age groups before and after induction of osteogenic differentiation. In addition, we also wanted to check their correlation with the degree of osteogenic differentiation. Methods: Human primary DPSCs from three age groups (milk tooth (SHEDs), 7–12 years old; young DPSCs (yDPSCs), 20–40 years old; old DPSCs (oDPSCs), 60+ years old) were characterized for mesenchymal stem cell (MSC) markers. DPSCs were subjected to osteogenic differentiation and functional staining. Gene expression levels were analyzed by qRT-PCR. Surface receptor analysis was done by flow cytometry. Comparative protein levels were evaluated by ELISA. Results: All SHEDs, yDPSCs, and oDPSCs were found to be expressing mesenchymal stem cell markers. SHEDs showed more mineralization than yDPSCs and oDPSCs after osteogenic induction. SHEDs exhibited higher expression of PTH and PTH1R before and after osteogenic induction, and after osteogenic induction, SHEDs showed more expression for RUNX2, ALPL, and OCN. Higher levels of PTH were observed in SHEDs and yDPSCs, and the number of PTH1R positive cells was relatively lower in yDPSCs and oDPSCs than in SHEDs. After osteogenic induction, SHEDs were superior in the secretion of OPG, and the secretions of ALPL and PTH and the number of PTH1R positive cells were relatively low in the oDPSCs. Conclusions: The therapeutic quality of dental pulp stem cells is largely based on their ability to retain their stemness characteristics. This study emphasizes the criterion of aging, which affects the secretion of PTH by these cells, which in turn attenuates their osteogenic potential.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3