A Model for Assessing the Importance of Runoff Forecasts in Periodic Climate on Hydropower Production

Author:

Hao Shuang1ORCID,Wörman Anders1ORCID,Riml Joakim1ORCID,Bottacin-Busolin Andrea2ORCID

Affiliation:

1. Department of Sustainable Development Environmental Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden

2. Department of Industrial Engineering, University of Padua, Via Venezia 1, 35121 Padova, Italy

Abstract

Hydropower is the largest source of renewable energy in the world and currently dominates flexible electricity production capacity. However, climate variations remain major challenges for efficient production planning, especially the annual forecasting of periodically variable inflows and their effects on electricity generation. This study presents a model that assesses the impact of forecast quality on the efficiency of hydropower operations. The model uses ensemble forecasting and stepwise linear optimisation combined with receding horizon control to simulate runoff and the operation of a cascading hydropower system. In the first application, the model framework is applied to the Dalälven River basin in Sweden. The efficiency of hydropower operations is found to depend significantly on the linkage between the representative biannual hydrologic regime and the regime actually realised in a future scenario. The forecasting error decreases when considering periodic hydroclimate fluctuations, such as the dry–wet year variability evident in the runoff in the Dalälven River, which ultimately increases production efficiency by approximately 2% (at its largest), as is shown in scenarios 1 and 2. The corresponding potential hydropower production is found to vary by 80 GWh/year. The reduction in forecasting error when considering biennial periodicity corresponds to a production efficiency improvement of about 0.33% (or 13.2 GWh/year).

Funder

China Scholarship Council

Swedish Energy Agency

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3