Process Energy and Material Consumption Determined by Reaction Sequence: From AAO to OHO

Author:

He Xuguang1,Ke Xiong1,Wei Tuo12,Chen Yao1,Qin Zhi1,Chen Acong1,Zhang Heng1,Huang Hua1,Yang Yudi1,Qiu Guanglei1ORCID,Wu Haizhen3,Wei Chaohai1

Affiliation:

1. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China

2. Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China

3. School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China

Abstract

The anaerobic-anoxic-oxic (AAO) process is one of the most widely used processes for treating industrial organic wastewater, and it has shown significant effectiveness in the removal of organic compounds, as well as denitrification and phosphorus removal. However, for the treatment of industrial organic wastewater, this anaerobic preposition and aerobic postposition process has exposed various limitations. Therefore, for this type of wastewater, the oxic-hydrolytic and denitrification-oxic (OHO) treatment process has been proposed and developed based on the principles of three-sludge separation and fluidization. This study integrated operational data from 203 coking wastewater treatment plants worldwide, and the two-step nitrification-denitrification activated sludge model No.3 (TCW-ASM3) was used for comparative analysis of the pollutant removal efficiency and total operating cost of the AAO process and the OHO process in the face of characteristic pollutants in coking wastewater. The results indicate that the full-scale OHO process achieved removal efficiencies of up to 3784 mg/L for chemical oxygen demand (COD) and 297 mg/L for total nitrogen (TN). The theoretical total cost for OHO and AAO were 9.75 and 14.38 CNY/m3, respectively. The pre-treatment aerobic process effectively reduces the biological toxicity of high-toxicity and refractory industrial wastewater, and the three-sludge system provides a stable living space for functional microorganisms, the combination of multi-mode denitrification processes offers new possibilities for treating similar types of industrial wastewater.

Funder

Key Technologies Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3