Physical Layer Key Generation in 5G and Beyond Wireless Communications: Challenges and Opportunities

Author:

Li GuyueORCID,Sun Chen,Zhang JunqingORCID,Jorswieck EduardORCID,Xiao Bin,Hu Aiqun

Abstract

The fifth generation (5G) and beyond wireless communications will transform many exciting applications and trigger massive data connections with private, confidential, and sensitive information. The security of wireless communications is conventionally established by cryptographic schemes and protocols in which the secret key distribution is one of the essential primitives. However, traditional cryptography-based key distribution protocols might be challenged in the 5G and beyond communications because of special features such as device-to-device and heterogeneous communications, and ultra-low latency requirements. Channel reciprocity-based key generation (CRKG) is an emerging physical layer-based technique to establish secret keys between devices. This article reviews CRKG when the 5G and beyond networks employ three candidate technologies: duplex modes, massive multiple-input multiple-output (MIMO) and mmWave communications. We identify the opportunities and challenges for CRKG and provide corresponding solutions. To further demonstrate the feasibility of CRKG in practical communication systems, we overview existing prototypes with different IoT protocols and examine their performance in real-world environments. This article shows the feasibility and promising performances of CRKG with the potential to be commercialized.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference59 articles.

1. Next Generation 5G Wireless Networks: A Comprehensive Survey

2. The 5G mobile communication: The development trends and its emerging key techniques;You;Sci. Sin.,2014

3. Overview of 5G Security Challenges and Solutions

4. Securing the Internet of Things in a Quantum World;Chi;IEEE Commun. Mag.,2017

5. Overview of 5G security technology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3