Evaluation of the TRMM Product for Monitoring Drought over Paraíba State, Northeastern Brazil: A Statistical Analysis

Author:

Brasil Neto Reginaldo MouraORCID,Santos Celso Augusto GuimarãesORCID,Nascimento Thiago Victor Medeiros doORCID,Silva Richarde Marques daORCID,dos Santos Carlos Antonio CostaORCID

Abstract

Drought is a natural phenomenon that originates from the absence of precipitation over a certain period and is capable of causing damage to societal development. With the advent of orbital remote sensing, rainfall estimates from satellites have appeared as viable alternatives to monitor natural hazards in ungauged basins and complex areas of the world; however, the accuracies of these orbital products still need to be verified. Thus, this work aims to evaluate the performance of Tropical Rainfall Measuring Mission (TRMM) satellite rainfall estimates in monitoring the spatiotemporal behavior of droughts at multiple temporal scales over Paraíba State based on the standardized precipitation index (SPI) over 20 years (1998–2017). For this purpose, rainfall data from 78 rain gauges and 187 equally spaced TRMM cell grids throughout the region are used, and accuracy analyses are performed at the single-gauge level and in four mesoregions at eight different time scales based on 11 statistical metrics calculations divided into three different categories. The results show that in the mesoregions close to the coast, the satellite-based product is less accurate in capturing the drought behavior regardless of the evaluated statistical metrics. At the temporal scale, the TRMM is more accurate in identifying the pattern of medium-term droughts; however, there is considerable spatial variation in the accuracy of the product depending on the performance index. Therefore, it is concluded that rainfall estimates from the TRMM satellite are a valuable source of data to identify drought behavior in a large part of Paraíba State at different time scales, and further multidisciplinary studies should be conducted to monitor these phenomena more accurately based on satellite data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3