Understanding the Land Surface Phenology and Gross Primary Production of Sugarcane Plantations by Eddy Flux Measurements, MODIS Images, and Data-Driven Models

Author:

Xin Fengfei,Xiao XiangmingORCID,Cabral Osvaldo M.R.,White Paul M.ORCID,Guo Haiqiang,Ma Jun,Li Bo,Zhao BinORCID

Abstract

Sugarcane (complex hybrids of Saccharum spp., C4 plant) croplands provide cane stalk feedstock for sugar and biofuel (ethanol) production. It is critical for us to analyze the phenology and gross primary production (GPP) of sugarcane croplands, which would help us to better understand and monitor the sugarcane growing condition and the carbon cycle. In this study, we combined the data from two sugarcane EC flux tower sites in Brazil and the USA, images from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, and data-driven models to study the phenology and GPP of sugarcane croplands. The seasonal dynamics of climate, vegetation indices from MODIS images, and GPP from two sugarcane flux tower sites (GPPEC) reveal the temporal consistency in sugarcane phenology (crop calendar: green-up dates and harvesting dates) as estimated by the vegetation indices and GPPEC data. The Land Surface Water Index (LSWI) is shown to be useful to delineate the phenology of sugarcane croplands. The relationship between the sugarcane GPPEC and the Enhanced Vegetation Index (EVI) is stronger than the relationship between the GPPEC and the Normalized Difference Vegetation Index (NDVI). We ran the Vegetation Photosynthesis Model (VPM), which uses the light use efficiency (LUE) concept and is driven by climate data and MODIS images, to estimate the daily GPP at the two sugarcane sites (GPPVPM). The seasonal dynamics of the GPPVPM and GPPEC at the two sites agreed reasonably well with each other, which indicates that VPM is a powerful tool for estimating the GPP of sugarcane croplands in Brazil and the USA. This study clearly highlights the potential of combining eddy covariance technology, satellite-based remote sensing technology, and data-driven models for better understanding and monitoring the phenology and GPP of sugarcane croplands under different climate and management practices.

Funder

Brazil Embrapa

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3