Hydroxyapatite Biosynthesis Obtained from Sea Urchin Spines (Strongylocentrotus purpuratus): Effect of Synthesis Temperature

Author:

Gómez Vázquez Nayeli Sarahi,Luque Morales Priscy Alfredo,Gomez Gutierrez Claudia Mariana,Nava Olivas Osvaldo de Jesus,Villarreal Sánchez Ruben Cesar,Vilchis Nestor Alfredo Rafael,Chinchillas Chinchillas Manuel de Jesús

Abstract

In this investigation, hydroxyapatite (HA) was synthesized using sea urchin spines (Strongylocentrotus purpuratus) via a precipitation and heat treatment method at three different temperatures (500, 600 and 700 °C). Biosynthesized HA was characterized to determine the vibration of functional groups, morphology, particle size, crystalline structure and chemical composition. For this, Fourier-Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were used, respectively. The FTIR-ATR results reveal that the most defined characteristic HA bonds (O-H, P-O and C-O bonds) were better defined at higher synthesis temperatures. SEM also presented evidence that temperature has a significant effect on morphology. EDS results showed that the Ca/P ratio increased in the samples at higher temperatures. XRD analysis presented the characteristic peaks of HA, showing a lower crystallinity when the synthesis temperature increased. Finally, the XPS confirmed that the material resulting from biosynthesis was HA. Hence, according to these results, the synthesis temperature of HA has a significant effect on the characteristics of the resulting material.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3