Deposit and Characterization of Semiconductor Films Based on Maleiperinone and Polymeric Matrix of (Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate)

Author:

Sánchez Vergara María ElenaORCID,Ramirez Sergio Barrientos,Alanis Rafael Loaiza,Ramírez Georgina Montes de Oca,Baeza Alvarado María Dolores,Fomina Lioudmila,Rios Citlalli,Salcedo Roberto

Abstract

The development of small semiconductor molecules such as the maleiperinone, have gained importance due to their applications in optoelectronics. In this work semiconductor films composed by a polymer matrix of PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) and maleiperinone were manufactured. The films used in the studies were deposited by vacuum evaporation and spin-coating techniques. Atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Infrared spectroscopy were used for the analysis of morphological and structural films. The fundamental and the onset of the direct and indirect band gaps were also obtained by UV-vis spectroscopy. The band-model theory and the Density-functional theory (DFT) calculations were applied to determine the optical parameters. The dipole moment is 3.33 Db, and the high polarity gives a signal of the heterogeneous charge distribution along the structure of maleiperinone. Simple devices were made from the films and their electrical behavior was subsequently evaluated. The presence of the polymer decreased the energy barrier between the film and the anode, favoring the transport of charges in the device. Graphene decreased the absorption and its ohmic behavior make it a candidate to be used as a transparent electrode in optoelectronic devices. Finally, the MoO3 provides a behavior similar to a dielectric.

Funder

Universidad Anáhuac México

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3