Time-Efficient Identification Procedure for Neurological Complications of Rescue Patients in an Emergency Scenario Using Hardware-Accelerated Artificial Intelligence Models

Author:

Ahammed Abu Shad1,Ezekiel Aniebiet Micheal1ORCID,Obermaisser Roman1

Affiliation:

1. Chair of Embedded System, Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany

Abstract

During an emergency rescue operation, rescuers have to deal with many different health complications like cardiovascular, respiratory, neurological, psychiatric, etc. The identification process of the common health complications in rescue events is not very difficult or time-consuming because the health vital symptoms or primary observations are enough to identify, but it is quite difficult with some complications related to neurology e.g., schizophrenia, epilepsy with non-motor seizures, or retrograde amnesia because they cannot be identified with the trend of health vital data. The symptoms have a wide spectrum and are often non-distinguishable from other types of complications. Further, waiting for results from medical tests like MRI and ECG is time-consuming and not suitable for emergency cases where a quick treatment path is an obvious necessity after the diagnosis. In this paper, we present a novel solution for overcoming these challenges by employing artificial intelligence (AI) models in the diagnostic procedure of neurological complications in rescue situations. The novelty lies in the procedure of generating input features from raw rescue data used in AI models, as the data are not like traditional clinical data collected from hospital repositories. Rather, the data were gathered directly from more than 200,000 rescue cases and required natural language processing techniques to extract meaningful information. A step-by-step analysis of developing multiple AI models that can facilitate the fast identification of neurological complications, in general, is presented in this paper. Advanced data analytics are used to analyze the complete record of 273,183 rescue events in a duration of almost 10 years, including rescuers’ analysis of the complications and their diagnostic methods. To develop the detection model, seven different machine learning algorithms-Support Vector Machine (SVM), Random Forest (RF), K-nearest neighbor (KNN), Extreme Gradient Boosting (XGB), Logistic Regression (LR), Naive Bayes (NB) and Artificial Neural Network (ANN) were used. Observing the model’s performance, we conclude that the neural network and extreme gradient boosting show the best performance in terms of selected evaluation criteria. To utilize this result in practical scenarios, the paper also depicts the possibility of embedding such machine learning models in hardware like FPGA. The goal is to achieve fast detection results, which is a primary requirement in any rescue mission. An inference time analysis of the selected ML models and VTA AI accelerator of Apache-TVM machine learning compiler used for the FPGA is also presented in this research.

Funder

Federal Ministry of Education and Research, Germany

Kreis Siegen–Wittgenstein, City of Siegen, the German Red Cross Siegen

Jung-Stilling-Hospital in Siegen

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3