Investigation on Adsorption of Polar Molecules in Vegetable Insulating Oil by Functional Fossil Graphene

Author:

Liang Suning1,Yang Zhi1,Shao Xianjun1,Zheng Yiming1,Wang Qiang2,Huang Zhengyong2

Affiliation:

1. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China

2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China

Abstract

As a new engineering dielectric, vegetable insulating oil is widely used in electrical equipment. Small polar molecules such as alcohol and acid will be produced during the oil-immersed electrical equipment operation, which seriously affects the safety of equipment. The polar molecule can be removed by using functional fossil graphene materials. However, the structural design and group modification of graphene materials lack a theoretical basis. Therefore, in this paper, molecular dynamics (MD) and quantum mechanics theory (Dmol3) were utilized to study the adsorption kinetics and mechanism of graphene (GE), porous graphene (PGE), porous hydroxy graphene (HPGE), and porous graphene modified by hydroxyl and carboxyl groups (COOH-HPGE) on polar small molecules in vegetable oil. The results show that graphene-based materials can effectively adsorb polar small molecules in vegetable oil, and that the modification of graphene materials with carboxyl and hydroxyl groups improves their adsorption ability for polar small molecules, which is attributed to the conversion of physical adsorption to chemical adsorption by the modification of oxygen-containing groups. This study provides a theoretical basis for the design and preparation of graphene materials with high adsorption properties.

Funder

Science and Technology Project of State Grid Zhejiang Electric Power Co., Ltd.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3