Rational Design, Stabilities and Nonlinear Optical Properties of Non-Conventional Transition Metalides; New Entry into Nonlinear Optical Materials

Author:

Alkhalifah Mohammed A.1,Sheikh Nadeem S.2ORCID,Al-Faiyz Yasair S. S.1ORCID,Bayach Imene1ORCID,Ludwig Ralf345,Ayub Khurshid6

Affiliation:

1. Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia

2. Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei

3. University of Rostock, Institute of Chemistry, Physical and Theoretical Chemistry, Albert-Einstein-Straße 27, 18059 Rostock, Germany

4. Department of Science and Technology of Life, Light and Matter, Faculty of Interdisciplinary Research, University of Rostock, 18059 Rostock, Germany

5. Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany

6. Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KPK, Pakistan

Abstract

Electronic and nonlinear optical properties of endohedral metallofullerenes are presented. The endohedral metallofullerenes contain transition metal encapsulated in inorganic fullerenes X12Y12 (X = B, Al & Y = N, P). The endohedral metallofullerenes (endo-TM@X12Y12) possess quite interesting geometric and electronic properties, which are the function of the nature of the atom and the size of fullerene. NBO charge and frontier molecular orbital analyses reveal that the transition metal encapsulated Al12N12 fullerenes (endo-TM@Al12N12) are true metalides when the transition metals are Ni, Cu and Zn. Endo-Cr@Al12N12 and endo-Co@Al12N12 are at the borderline between metalides and electrides with predominantly electride characteristics. The other members of the series are excess electron systems, which offer interesting electronic and nonlinear optical properties. The diversity of nature possessed by endo-TM@Al12N12 is not prevalent for other fullerenes. Endo-TM@Al12P12 are true metalides when the transition metals are (Cr-Zn). HOMO-LUMO gaps (EH-L) are reduced significantly for these endohedral metallofullerenes, with a maximum percent decrease in EH-L of up to 70%. Many complexes show odd–even oscillating behavior for EH-L and dipole moments. Odd electron species contain large dipole moments and small EH-L, whereas even electron systems have the opposite behavior. Despite the decrease in EH-L, these systems show high kinetic and thermodynamic stabilities. The encapsulation of transition metals is a highly exergonic process. These endo-TM@X12Y12 possess remarkable nonlinear optical response in which the first hyperpolarizability reaches up to 2.79 × 105 au for endo-V@Al12N12. This study helps in the comparative analysis of the potential nonlinear optical responses of electrides, metalides and other excess electron systems. In general, the potential nonlinear optical response of electrides is higher than metalides but lower than those of simple excess electron compounds. The higher non-linear optical response and interesting electronic characteristics of endo-TM@Al12N12 complexes may be promising contenders for potential NLO applications.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3