Investigation into the Dynamic Stability of Nanobeams by Using the Levinson Beam Model

Author:

Huang Youqin1,Huang Richeng1,Huang Yonghui1ORCID

Affiliation:

1. Research Centre for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou 510006, China

Abstract

Dynamic stability is an important mechanical behavior of nanobeams, which has been studied extensively using the Euler–Bernoulli and Timoshenko beam theories, while the Levinson-beam-theory-based dynamic instability analysis of nanobeams has not been investigated yet. Shear deformation is not or is not suitably considered in the Euler–Bernoulli and Timoshenko theories, so it is very important to introduce the Levinson beam theory in the dynamic stability analysis of nanobeams, which correctly models the combined action of bending and shear in nanobeams with smaller length/height ratios. In this work, the equation of the transverse vibration of a Levinson beam embedded in an elastic foundation is firstly formulated based on the displacement field of Levinson beam theory, and the nonlocal theory is further applied to the Levinson nanobeam. Then, the governing equation of the dynamic stability of the Levinson nanobeam is derived using Bolotin’s method to achieve a generalized eigenvalue problem corresponding to the boundaries of regions of dynamic instability. The principal instability region (PIR) is the most important among all regions, so the boundary of the PIR is focused on in this work to investigate the dynamic stability of the Levinson nanobeam. When the width, length/height ratio, density, Young’s modulus, Poisson’s ratio, size scale parameter, and medium stiffness increase by about 1.5 times, the width of the PIR changes by about 19%, −57%, −20%, 65%, 0, −9%, and −11%, respectively. If a smaller critical excitation frequency and narrower width of the PIR correspond to the better performance of dynamic stability, the study shows that the dynamic stability of the Levinson nanobeam embedded in an elastic medium improves under a larger length and density and a smaller width, height, and Young’s modulus, since these factors are related to the natural frequency of the nanobeam which controls the width of the PIR. Additionally, the local model would overestimate the dynamic stability behavior of the Levinson nanobeam.

Funder

Guangzhou Municipal Science and Technology Bureau

Guangzhou Municipal Science and Technology Bureau Project

“111” Project

National Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3