Abstract
Leakage detection is a fundamental problem in water management. Its importance is expressed not only in avoiding resource wastage, but also in protecting the environment and the safety of water resources. Therefore, early leak detection is increasingly urged. This paper used an intelligent leak detection method based on a model using statistical parameters extracted from acoustic emission (AE) signals. Since leak signals depend on many operation conditions, the training data in real-life situations usually has a small size. To solve the problem of a small sample size, a data improving method based on enhancing the generalization ability of the data was proposed. To evaluate the effectiveness of the proposed method, this study used the datasets obtained from two artificial leak cases which were generated by pinholes with diameters of 0.3 mm and 0.2 mm. Experimental results show that the employment of the additional data improving block in the leak detection scheme enhances the quality of leak detection in both terms of accuracy and stability.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献