Resonant Mixing in Glass Bowl Microbioreactor Investigated by Microparticle Image Velocimetry

Author:

Meinen SvenORCID,Frey Lasse JannisORCID,Krull Rainer,Dietzel AndreasORCID

Abstract

Microbioreactors are gaining increased interest in biopharmaceutical research. Due to their decreasing size, the parallelization of multiple reactors allows for simultaneous experiments. This enables the generation of high amounts of valuable data with minimal consumption of precious pharmaceutical substances. However, in bioreactors of all scales, fast mixing represents a crucial condition. Efficient transportation of nutrients to the cells ensures good growing conditions, homogeneous environmental conditions for all cultivated cells, and therefore reproducible and valid data. For these reasons, a new type of batch microbioreactor was developed in which any moving mixer component is rendered obsolete through the utilization of capillary surface waves for homogenization. The bioreactor was fabricated in photosensitive glass and its fluid volume of up to 8 µL was provided within a bowl-shaped volume. External mechanical actuators excited capillary surface waves and stereo microparticle image velocimetry (µPIV) was used to analyze resulting convection at different excitation conditions in varied reactor geometries. Typical vortex patterns were observed at certain resonance frequencies where best mixing conditions occurred. Based on the results, a simplified 1D model which predicts resonance frequencies was evaluated. Cultivation of Escherichia coli BL21 under various mixing conditions showed that mixing in resonance increased the biomass growth rate, led to high biomass concentrations, and provided favorable growth conditions. Since glass slides containing multiple bowl reactors can be excited as a whole, massive parallelization is foreseen.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3