New Generation of 3D Virtual Models with Perfusional Zones: Perioperative Assistance for the Best Pedicle Management during Robotic Partial Nephrectomy

Author:

Amparore Daniele1ORCID,Piramide Federico1,Verri Paolo1ORCID,Checcucci Enrico2,De Cillis Sabrina1,Piana Alberto1ORCID,Volpi Gabriele2,Burgio Mariano1,Busacca Giovanni1,Colombo Marco1,Fiori Cristian1,Porpiglia Francesco1

Affiliation:

1. Department of Urology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy

2. Department of Surgery, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy

Abstract

Selective clamping during robot-assisted partial nephrectomy (RAPN) may reduce ischemia-related functional impairment. The intraoperative use of 3D-virtual models (3DVMs) can improve surgical planning, resulting in a greater success rate for selective clamping. Our goal is to introduce a new generation of 3DVMs, which consider the perfusion volumes of the kidney. Patients listed for RAPN from 2021 to 2022 were recruited. A selective clamping strategy was designed and intraoperatively performed based on the specifically generated 3DVMs. The effectiveness of selective clamping was evaluated using near-infrared-fluorescence imaging (NIRF) and 3DVM. Perfusion areas extensions were compared, and relevant preoperative characteristics were analyzed. In 61 of 80 (76.25%) cases, selective clamping was performed. The concordance between the 3DVM areas and the NIRF-enhanced areas was verified (k = 0.91). According to the distribution of perfused areas crossing the tumor, there were one, two, three, four, and five crossing areas, with relative perfusion rates of 13.75%, 35%, 32.5%, 13.75%, and 5%, respectively. Lesion diameter and mesorenal location were the only factors related to a higher number (>3) of perfusion volumes crossing the lesion. The implementation of mathematical algorithms to 3DVMs allows for precise estimation of the perfusion zone of each arterial branch feeding the organ, leading to the performance of safe and effective pedicle management planning.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3