A Machine Learning Approach to Predict Stress Hormones and Inflammatory Markers Using Illness Perception and Quality of Life in Breast Cancer Patients

Author:

Crumpei-Tanasă Irina,Crumpei Iulia

Abstract

Psychosocial factors have become central concepts in oncology research. However, their role in the prognosis of the disease is not yet well established. Studies on this subject report contradictory findings. We examine if illness perception and quality of life reports measured at baseline could predict the stress hormones and inflammatory markers in breast cancer survivors, one year later. We use statistics and machine learning methods to analyze our data and find the best prediction model. Patients with stage I to III breast cancer (N = 70) were assessed twice, at baseline and one year later, and completed scales assessing quality of life and illness perception. Blood and urine samples were obtained to measure stress hormones (cortisol and adrenocorticotropic hormone (ACTH) and inflammatory markers (c-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and fibrinogen). Family quality of life is a strong predictor for ACTH. Women who perceive their illness as being more chronic at baseline have higher ESR and fibrinogen values one year later. The artificial intelligence (AI) data analysis yields the highest prediction score of 81.2% for the ACTH stress hormone, and 70% for the inflammatory marker ESR. A chronic timeline, illness control, health and family quality of life were important features associated with the best predictive results.

Funder

"Alexandru Ioan Cuza" University

Publisher

MDPI AG

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3