Abstract
Total body irradiation (TBI), used as part of the conditioning regimen prior to allogeneic and autologous hematopoietic cell transplantation, is the delivery of a relatively homogeneous dose of radiation to the entire body. TBI has a dual role, being cytotoxic and immunosuppressive. This allows it to eliminate disease and create “space” in the marrow while also impairing the immune system from rejecting the foreign donor cells being transplanted. Advantages that TBI may have over chemotherapy alone are that it may achieve greater tumour cytotoxicity and better tissue penetration than chemotherapy as its delivery is independent of vascular supply and physiologic barriers such as renal and hepatic function. Therefore, the so-called “sanctuary” sites such as the central nervous system (CNS), testes, and orbits or other sites with limited blood supply are not off-limits to radiation. Nevertheless, TBI is hampered by challenging logistics of administration, coordination between hematology and radiation oncology departments, increased rates of acute treatment-related morbidity and mortality along with late toxicity to other tissues. Newer technologies and a better understanding of the biology and physics of TBI has allowed the field to develop novel delivery systems which may help to deliver radiation more safely while maintaining its efficacy. However, continued research and collaboration are needed to determine the best approaches for the use of TBI in the future.
Reference108 articles.
1. Sources and Effects of Ionizing Radiation:... Report to the General Assembly, with Annexes,1977
2. Lethality from Acute and Protracted Radiation Exposure in Man
3. Medical Effects of Ionizing Radiation
4. Protection of Mice Against X-Irradiation by Spleen Homogenates Administered After Exposure.
5. Recovery from Acute Radiation Injury in Mice Following Administration of Rat Bone Marrow;Cole;J. Natl. Cancer Inst.,1955
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献