A Novel, Simple, and Low-Cost Approach for Machine Learning Screening of Kidney Cancer: An Eight-Indicator Blood Test Panel with Predictive Value for Early Diagnosis

Author:

Li HaiyangORCID,Wang Fei,Huang Weini

Abstract

Clear cell renal cell carcinoma (ccRCC) accounts for more than 90% of all renal cancers. The five-year survival rate of early-stage (TNM 1) ccRCC reaches 96%, while the advanced-stage (TNM 4) is only 23%. Therefore, early screening of patients with renal cancer is essential for the treatment of renal cancer and the long-term survival of patients. In this study, blood samples of patients were collected and a pre-defined set of blood indicators were measured. A random forest (RF) model was established to predict based on each indicator in the blood, and was trained with all relevant indicators for comprehensive predictions. In our study, we found that there was a high statistical significance (p < 0.001) for all indicators of healthy individuals and early cancer patients, except for uric acid (UA). At the same time, ccRCC also presented great differences in most blood indicators between males and females. In addition, patients with ccRCC had a higher probability of developing a low ratio of albumin (ALB) to globulin (GLB) (AGR < 1.2). Eight key indicators were used to classify and predict renal cell carcinoma. The area under the receiver operating characteristic (ROC) curve (AUC) of the eight-indicator model was as high as 0.932, the sensitivity was 88.2%, and the specificity was 86.3%, which are acceptable in many applications, thus realising early screening for renal cancer by blood indicators in a simple blood-draw physical examination. Furthermore, the composite indicator prediction method described in our study can be applied to other clinical conditions or diseases, where multiple blood indicators may be key to enhancing the diagnostic potential of screening strategies.

Funder

Young Pharmacists Scientific Research Foundation for the Sichuan Hospital Association

China’s Thousand Talents Program Funds

Guangdong QR Program Research Funding

Publisher

MDPI AG

Reference55 articles.

1. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;CA Cancer J. Clin.,2021

2. Kidney cancer;Cancer J.,2016

3. Cisplatin-induced renal toxicity in elderly people;Ther. Adv. Med. Oncol.,2020

4. Ageing and vulnerable elderly people: European perspectives;Ageing Soc.,2006

5. Facing up to the global challenges of ageing;Nature,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3