Enhancement of Detecting Permanent Water and Temporary Water in Flood Disasters by Fusing Sentinel-1 and Sentinel-2 Imagery Using Deep Learning Algorithms: Demonstration of Sen1Floods11 Benchmark Datasets

Author:

Bai YanbingORCID,Wu WenqiORCID,Yang Zhengxin,Yu Jinze,Zhao Bo,Liu Xing,Yang Hanfang,Mas ErickORCID,Koshimura ShunichiORCID

Abstract

Identifying permanent water and temporary water in flood disasters efficiently has mainly relied on change detection method from multi-temporal remote sensing imageries, but estimating the water type in flood disaster events from only post-flood remote sensing imageries still remains challenging. Research progress in recent years has demonstrated the excellent potential of multi-source data fusion and deep learning algorithms in improving flood detection, while this field has only been studied initially due to the lack of large-scale labelled remote sensing images of flood events. Here, we present new deep learning algorithms and a multi-source data fusion driven flood inundation mapping approach by leveraging a large-scale publicly available Sen1Flood11 dataset consisting of roughly 4831 labelled Sentinel-1 SAR and Sentinel-2 optical imagery gathered from flood events worldwide in recent years. Specifically, we proposed an automatic segmentation method for surface water, permanent water, and temporary water identification, and all tasks share the same convolutional neural network architecture. We utilize focal loss to deal with the class (water/non-water) imbalance problem. Thorough ablation experiments and analysis confirmed the effectiveness of various proposed designs. In comparison experiments, the method proposed in this paper is superior to other classical models. Our model achieves a mean Intersection over Union (mIoU) of 52.99%, Intersection over Union (IoU) of 52.30%, and Overall Accuracy (OA) of 92.81% on the Sen1Flood11 test set. On the Sen1Flood11 Bolivia test set, our model also achieves very high mIoU (47.88%), IoU (76.74%), and OA (95.59%) and shows good generalization ability.

Funder

Fundamental Research Funds for the Central Universities, Research Funds of Renmin University of China

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. World Disaster Report 2020https://media.ifrc.org/ifrc/world-disaster-report-2020/

2. Global Report on Internal Displacementhttps://www.internal-displacement.org/sites/default/files/publications/documents/2019-IDMC-GRID.pdf

3. Weather, Climate & Catastrophe Insight 2019 Annual Reporthttp://thoughtleadership.aon.com/Documents/20200122-if-natcat2020.pdf?utm_source=ceros&utm_medium=storypage&utm_campaign=natcat20

4. The State of Food Security and Nutrition in the Worldhttp://www.fao.org/3/I9553EN/i9553en.pdf

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3