A Burned Area Mapping Algorithm for Sentinel-2 Data Based on Approximate Reasoning and Region Growing

Author:

Sali Matteo,Piaser Erika,Boschetti MircoORCID,Brivio Pietro AlessandroORCID,Sona GiovannaORCID,Bordogna Gloria,Stroppiana DanielaORCID

Abstract

Sentinel-2 (S2) multi-spectral instrument (MSI) images are used in an automated approach built on fuzzy set theory and a region growing (RG) algorithm to identify areas affected by fires in Mediterranean regions. S2 spectral bands and their post- and pre-fire date (Dpost-pre) difference are interpreted as evidence of burn through soft constraints of membership functions defined from statistics of burned/unburned training regions; evidence of burn brought by the S2 spectral bands (partial evidence) is integrated using ordered weighted averaging (OWA) operators that provide synthetic score layers of likelihood of burn (global evidence of burn) that are combined in an RG algorithm. The algorithm is defined over a training site located in Italy, Vesuvius National Park, where membership functions are defined and OWA and RG algorithms are first tested. Over this site, validation is carried out by comparison with reference fire perimeters derived from supervised classification of very high-resolution (VHR) PlanetScope images leading to more than satisfactory results with Dice coefficient >0.84, commission error <0.22 and omission error <0.15. The algorithm is tested for exportability over five sites in Portugal (1), Spain (2) and Greece (2) to evaluate the performance by comparison with fire reference perimeters derived from the Copernicus Emergency Management Service (EMS) database. In these sites, we estimate commission error <0.15, omission error <0.1 and Dice coefficient >0.9 with accuracy in some cases greater than values obtained in the training site. Regression analysis confirmed the satisfactory accuracy levels achieved over all sites. The algorithm proposed offers the advantages of being least dependent on a priori/supervised selection for input bands (by building on the integration of redundant partial burn evidence) and for criteria/threshold to obtain segmentation into burned/unburned areas.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3