Validation of Sentinel-3 SLSTR Land Surface Temperature Retrieved by the Operational Product and Comparison with Explicitly Emissivity-Dependent Algorithms

Author:

Pérez-Planells LluísORCID,Niclòs RaquelORCID,Puchades Jesús,Coll CésarORCID,Göttsche Frank-M.ORCID,Valiente José A.,Valor EnricORCID,Galve Joan M.ORCID

Abstract

Land surface temperature (LST) is an essential climate variable (ECV) for monitoring the Earth climate system. To ensure accurate retrieval from satellite data, it is important to validate satellite derived LSTs and ensure that they are within the required accuracy and precision thresholds. An emissivity-dependent split-window algorithm with viewing angle dependence and two dual-angle algorithms are proposed for the Sentinel-3 SLSTR sensor. Furthermore, these algorithms are validated together with the Sentinel-3 SLSTR operational LST product as well as several emissivity-dependent split-window algorithms with in-situ data from a rice paddy site. The LST retrieval algorithms were validated over three different land covers: flooded soil, bare soil, and full vegetation cover. Ground measurements were performed with a wide band thermal infrared radiometer at a permanent station. The coefficients of the proposed split-window algorithm were estimated using the Cloudless Land Atmosphere Radiosounding (CLAR) database: for the three surface types an overall systematic uncertainty (median) of −0.4 K and a precision (robust standard deviation) 1.1 K were obtained. For the Sentinel-3A SLSTR operational LST product, a systematic uncertainty of 1.3 K and a precision of 1.3 K were obtained. A first evaluation of the Sentinel-3B SLSTR operational LST product was also performed: systematic uncertainty was 1.5 K and precision 1.2 K. The results obtained over the three land covers found at the rice paddy site show that the emissivity-dependent split-window algorithms, i.e., the ones proposed here as well as previously proposed algorithms without angular dependence, provide more accurate and precise LSTs than the current version of the operational SLSTR product.

Funder

Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3