Experimental Monitoring of Dynamic Parameters of the Sub-Ballast Layers as a Prerequisite for a High-Quality and Sustainable Railway Line

Author:

Ižvolt Libor1,Dobeš Peter1ORCID,Papánová Zuzana2ORCID,Mečár Martin1

Affiliation:

1. Department of Railway Engineering and Track Management (DRETM), University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

2. Department of Structural Mechanics and Applied Mathematics (DSMAM), University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

Abstract

Monitoring dynamic load transfer from train traffic to sub-ballast layers is crucial for verifying the reliability and safety of railway lines, assessing the design cost-effectiveness and achieving minimum environmental impact. For this purpose, measurements in labs, in situ or modeling the influence of dynamic loads on the immediate and long-term roadway quality are often performed using suitable software. The available test sections enabled monitoring of the dynamic loads and optimizing the critical spots where increased dynamic effects from railway traffic may occur. The subject of this paper is the calibration of the sensors installed in the different test sections of the trans-European corridor number V. As a result, the necessary input parameters for the subsequent numerical modeling of the dynamic effects on the track substructure and vibration propagation on the available sections of the upgraded railway line were obtained. The sensor calibration was carried out on the experimental field, part of the Experimental Basis of the Department of Railway Engineering and Track Management. As part of the calibration, the sensitivity of the sensors embedded in the track bed to the applied dynamic loads resulting from the impact effects of the lightweight deflectometer was assessed. The result of the calibration was the demonstration of sufficient sensitivity of the sensors and their suitability for implementation in an actual railway track structure, with the aim of obtaining relevant values of the response of the sub-ballast layers to dynamic loads and assessing the operational impacts on the sustainable environment. Also, the main result of the research was the possibility of using the theoretical–experimental route to optimize the layers of the railway body.

Funder

VEGA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3