The Response of Carbon Storage to Multi-Objective Land Use/Cover Spatial Optimization and Vulnerability Assessment

Author:

Jiang Yuncheng1,Ouyang Bin12,Yan Zhigang1

Affiliation:

1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

2. Jiangxi Vocational College of Industry & Engineering, Pingxiang 337099, China

Abstract

The dynamic changes in land use/cover (LULC) significantly influence carbon storage, and assessing the vulnerability of carbon storage services in different basins is crucial for a comprehensive understanding of the impacts of human activities on ecosystems. The objective of this study is to propose a framework for optimizing LULC, simulating carbon storage, and assessing vulnerability by integrating the MOP, PLUS, and InVEST models. The results show that forests play a crucial role in enhancing carbon storage services in the Yangtze River Basin (YRB). Carbon storage in the upper reaches of the YRB is on the rise, counteracting the decrease in carbon storage caused by the expansion of built-up land. However, in the middle and lower reaches of the YRB, LULC has a negative impact on ecosystem carbon storage services. Under natural development scenarios, carbon storage is projected to decrease by 68.84 × 106 tons, leading to increased vulnerability of ecosystem carbon storage services. Under the scenario of ecological and economic balance, carbon storage is expected to increase by 97 × 106 tons. In the future, while restricting built-up land expansion, emphasis should be placed on expanding forest areas to more effectively enhance ecosystem services in basins.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China University of Mining and Technology

Jiangsu Province

China Scholarship Fund

Jiangxi Provincial Education Department

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3