Author:
Xue Wei,Luo Yan,Yang Yue,Huang Yujin
Abstract
Ground-penetrating radar (GPR) is an effective tool for subsurface detection. Due to the influence of the environment and equipment, the echoes of GPR contain significant noise. In order to suppress noise for GPR data, a method based on singular value decomposition (SVD) of a window-length-optimized Hankel matrix is proposed in this paper. First, SVD is applied to decompose the Hankel matrix of the original data, and the fourth root of the fourth central moment of singular values is used to optimize the window length of the Hankel matrix. Then, the difference spectrum of singular values is used to construct a threshold, which is used to distinguish between components of effective signals and components of noise. Finally, the Hankel matrix is reconstructed with singular values corresponding to effective signals to suppress noise, and the denoised data are recovered from the reconstructed Hankel matrix. The effectiveness of the proposed method is verified with both synthetic and field measurements. The experimental results show that the proposed method can effectively improve noise removal performance under different detection scenarios.
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities of China
State Scholarship Fund of China Scholarship Council
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献