Fetal Programming Is Deeply Related to Maternal Selenium Status and Oxidative Balance; Experimental Offspring Health Repercussions

Author:

Ojeda María Luisa,Nogales FátimaORCID,Romero-Herrera InésORCID,Carreras OlimpiaORCID

Abstract

Nutrients consumed by mothers during pregnancy and lactation can exert permanent effects upon infant developing tissues, which could represent an important risk factor for diseases during adulthood. One of the important nutrients that contributes to regulating the cell cycle and tissue development and functionality is the trace element selenium (Se). Maternal Se requirements increase during gestation and lactation. Se performs its biological action by forming part of 25 selenoproteins, most of which have antioxidant properties, such as glutathione peroxidases (GPxs) and selenoprotein P (SELENOP). These are also related to endocrine regulation, appetite, growth and energy homeostasis. In experimental studies, it has been found that low dietary maternal Se supply leads to an important oxidative disruption in dams and in their progeny. This oxidative stress deeply affects gestational parameters, and leads to intrauterine growth retardation and abnormal development of tissues, which is related to endocrine metabolic imbalance. Childhood pathologies related to oxidative stress during pregnancy and/or lactation, leading to metabolic programing disorders like fetal alcohol spectrum disorders (FASD), have been associated with a low maternal Se status and intrauterine growth retardation. In this context, Se supplementation therapy to alcoholic dams avoids growth retardation, hepatic oxidation and improves gestational and breastfeeding parameters in FASD pups. This review is focused on the important role that Se plays during intrauterine and breastfeeding development, in order to highlight it as a marker and/or a nutritional strategy to avoid diverse fetal programming disorders related to oxidative stress.

Funder

Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3