Sensitive Hg2+ Sensing via Quenching the Fluorescence of the Complex between Polythymine and 5,10,15,20-tetrakis(N-methyl-4-pyridyl) Porphyrin (TMPyP)

Author:

Wu Daohong,Huang Yaliang,Hu Shengqiang,Yi XinyaoORCID,Wang Jianxiu

Abstract

The interaction between polythymine (dTn) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl) porphyrin (TMPyP) was systematically studied using various techniques. dTn remarkably enhanced the fluorescence intensity of TMPyP as compared to other oligonucleotides. The enhanced fluorescence intensity and the shift of the emission peaks were ascribed to the formation of a π-π complex between TMPyP and dTn. And the quenching of the dTn-enhanced fluorescence by Hg2+ through a synergistic effect occurs due to the heavy atom effect. The binding of Hg2+ to TMPyP plays an important role in the Hg-TMPyP-dT30 ternary complex formation. A TMPyP-dT30-based Hg2+ sensor was developed with a dynamic range of Hg2+ from 5 nM to 100 nM. The detection limit of 1.3 nM was low enough for Hg2+ determination. The sensor also exhibited good selectivity against other metal ions. Experiments for tap water and river water demonstrated that the detection method was applicable for Hg2+ determination in real samples. The Hg2+ sensor based on oligonucleotide dT30-enhanced TMPyP fluorescence was fast and low-cost, presenting a promising platform for practical Hg2+ determination.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3