Training-Based Methods for Comparison of Object Detection Methods for Visual Object Tracking

Author:

Delforouzi Ahmad,Pamarthi Bhargav,Grzegorzek Marcin

Abstract

Object tracking in challenging videos is a hot topic in machine vision. Recently, novel training-based detectors, especially using the powerful deep learning schemes, have been proposed to detect objects in still images. However, there is still a semantic gap between the object detectors and higher level applications like object tracking in videos. This paper presents a comparative study of outstanding learning-based object detectors such as ACF, Region-Based Convolutional Neural Network (RCNN), FastRCNN, FasterRCNN and You Only Look Once (YOLO) for object tracking. We use an online and offline training method for tracking. The online tracker trains the detectors with a generated synthetic set of images from the object of interest in the first frame. Then, the detectors detect the objects of interest in the next frames. The detector is updated online by using the detected objects from the last frames of the video. The offline tracker uses the detector for object detection in still images and then a tracker based on Kalman filter associates the objects among video frames. Our research is performed on a TLD dataset which contains challenging situations for tracking. Source codes and implementation details for the trackers are published to make both the reproduction of the results reported in this paper and the re-use and further development of the trackers for other researchers. The results demonstrate that ACF and YOLO trackers show more stability than the other trackers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aggregate channel features in detecting multiple targets of an indoor scene;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

2. The effectiveness of aggregate channel features in detecting targets in different environments;PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022;2023

3. Deep Learning-Based Object Detection and Scene Perception under Bad Weather Conditions;Electronics;2022-02-13

4. Multi-scale personnel deep feature detection algorithm based on Extended-YOLOv3;Journal of Intelligent & Fuzzy Systems;2021-01-04

5. Quantitative analysis of blood cells from microscopic images using convolutional neural network;Medical & Biological Engineering & Computing;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3