Synthesis and Evaluation of Engineering Properties of Polymer-Coated Glass Beads

Author:

Yoon Boyoung1,Choo Hyunwook2,Lee Changho3ORCID

Affiliation:

1. School of Architectural, Civil and Environmental Engineering, Korea University, Seoul 02841, Republic of Korea

2. Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea

3. Department of Civil Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

Abstract

Modern construction projects are often challenging, which has increased the demand for innovative materials that ensure improved safety, durability, and functionality. To explore the potential of enhancing soil material functionality, this study synthesized polyurethane on the surface of glass beads and evaluated their mechanical properties. The synthesis of polymer proceeded according to a predetermined procedure, where the polymerization was confirmed through analysis of chemical structure by Fourier transform infrared spectroscopy (FT-IR) and microstructure observation by a scanning electron microscope (SEM) after complete synthesis. The constrained modulus (M) and the maximum shear modulus (Gmax) of mixtures with synthesized materials were examined by using an oedometer cell equipped with bender elements under a zero lateral strain condition. Both M and Gmax decreased with an increase in the contents of polymerized particles due to a decrease in the number of interparticle contacts and contact stiffness induced by the surface modification. The adhesion property of the polymer induced a stress-dependent change in M but was observed to have little effect on Gmax. Compared to the behavior of the rubber-sand mixtures, polymerized particles show the advantage of a smaller reduction of M.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3