Evolution of Grain Structure and Dynamic Precipitation during Hot Deformation in a Medium-Strength Al-Zn-Mg-Er-Zr Aluminum Alloy

Author:

Chen Jiongshen1ORCID,Rong Li1,Wei Wu1ORCID,Qi Peng1,Wang Meng2,Wang Zezhong3,Zhou Li3,Huang Hui1,Nie Zuoren1

Affiliation:

1. Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China

2. Xi’an Aerospace Power Machinery Corporation, Xi’an 710025, China

3. Dongfeng Motor Corporation, Wuhan 430056, China

Abstract

The hot deformation behavior of Al-Zn-Mg-Er-Zr alloy was investigated through an isothermal compression experiment at a strain rate ranging from 0.01 to 10 s−1 and temperature ranging from 350 to 500 °C. The constitutive equation of thermal deformation characteristics based on strain was established, and the microstructure (including grain, substructure and dynamic precipitation) under different deformation conditions was analyzed. It is shown that the steady-state flow stress can be described using the hyperbolic sinusoidal constitutive equation with a deformation activation energy of 160.03 kJ/mol. Two kinds of second phases exist in the deformed alloy; one is the η phase, whose size and quantity changes according to the deformation parameters, and the other is spherical Al3(Er, Zr) particles with good thermal stability. Both kinds of particles pin the dislocation. However, with a decrease in strain rate or increase in temperature, η phases coarsen and their density decreases, and their dislocation locking ability is weakened. However, the size of Al3(Er, Zr) particles does not change with the variation in deformation conditions. So, at higher deformation temperatures, Al3(Er, Zr) particles still pin dislocations and thus refine the subgrain and enhance the strength. Compared with the η phase, Al3(Er, Zr) particles are superior for dislocation locking during hot deformation. A strain rate ranging from 0.1 to 1 s−1 and a deformation temperature ranging from 450 to 500 °C form the safest hot working domain in the processing map.

Funder

National Key Research and Development Program of China

General Program of Science and Technology Development Project of Beijing Municipal Education Commission

Innovative Research Group Project of the National Natural Science Fund

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3