Affiliation:
1. Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
2. Xi’an Aerospace Power Machinery Corporation, Xi’an 710025, China
3. Dongfeng Motor Corporation, Wuhan 430056, China
Abstract
The hot deformation behavior of Al-Zn-Mg-Er-Zr alloy was investigated through an isothermal compression experiment at a strain rate ranging from 0.01 to 10 s−1 and temperature ranging from 350 to 500 °C. The constitutive equation of thermal deformation characteristics based on strain was established, and the microstructure (including grain, substructure and dynamic precipitation) under different deformation conditions was analyzed. It is shown that the steady-state flow stress can be described using the hyperbolic sinusoidal constitutive equation with a deformation activation energy of 160.03 kJ/mol. Two kinds of second phases exist in the deformed alloy; one is the η phase, whose size and quantity changes according to the deformation parameters, and the other is spherical Al3(Er, Zr) particles with good thermal stability. Both kinds of particles pin the dislocation. However, with a decrease in strain rate or increase in temperature, η phases coarsen and their density decreases, and their dislocation locking ability is weakened. However, the size of Al3(Er, Zr) particles does not change with the variation in deformation conditions. So, at higher deformation temperatures, Al3(Er, Zr) particles still pin dislocations and thus refine the subgrain and enhance the strength. Compared with the η phase, Al3(Er, Zr) particles are superior for dislocation locking during hot deformation. A strain rate ranging from 0.1 to 1 s−1 and a deformation temperature ranging from 450 to 500 °C form the safest hot working domain in the processing map.
Funder
National Key Research and Development Program of China
General Program of Science and Technology Development Project of Beijing Municipal Education Commission
Innovative Research Group Project of the National Natural Science Fund
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献