Microstructures and Mechanical Properties of Al-Zn-Mg-Cu Alloys under Multi-Directional Severe Strain and Aging

Author:

Wei Chunhua12,Lei Zhixin2,Du Sijie2,Chen Rongyou2,Yin Yutang2,Niu Chenglin2,Xu Zhengbing12ORCID

Affiliation:

1. MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Center of Ecological Collaborative Innovation for Aluminium Industry in Guangxi, Guangxi University, Nanning 530004, China

2. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

Abstract

Microstructure is a significant factor that influences the mechanical properties of alloys. The effect of multiaxial forging (MAF) and subsequent aging treatment on the precipitated phases of Al-Zn-Mg-Cu alloy remains unclear. Therefore, an Al-Zn-Mg-Cu alloy was processed by means of solid solution and aging treatment, and MAF and aging treatment in this work, and the composition and distribution of precipitated phases were characterized in detail. The MAF results for dislocation multiplication and grain refinement were found. The high density of dislocation greatly accelerates the nucleation and growth of precipitated phases. Thus, the GP-zones almost transform into precipitated phases during subsequent aging. The MAF and aging alloy has more precipitated phases than the solid solution and aging treated alloy. The precipitates on the grain boundary are coarse and discontinuously distributed due to dislocation and grain boundary promoting the nucleation, growth and coarsening of the precipitates. The hardness, strength, ductility and microstructures of the alloy have been studied. Without compromising the ductility much, the MAF and aging alloy has higher hardness and strength, with values of 202 HV and 606 MPa, respectively, and an appreciable ductility of 16.2%.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3